Какие координаты у. Декартова система координат: основные понятия и примеры

Глава I. Векторы на плоскости и в пространстве

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Данную тему мы предлагаем Вам рассмотреть в двух вариантах.

1) По учебнику И.И.Привалов "Аналитическая геометрия" (учебник для высших технических учебных заведений 1966 г.)

И.И.Привалов "Аналитическая геометрия"

§ 1. Задача преобразования координат.

Положение точки на плоскости определяется двумя координатами относительно некоторой системы координат. Координаты точки изменятся, если мы выберем другую систему координат.

Задача преобразования координат состоит в том, чтобы, зная координаты точки в одной системе координат, найти ее координаты в другой системе .

Эта задача будет разрешена, если мы установим формулы, связывающие координаты произвольной точки по двум системам, причем в коэффициенты этих формул войдут постоянные величины, определяющие взаимное положение систем.

Пусть даны две декартовы системы координат хОу и XO 1 Y (рис. 68).

Положение новой системы XO 1 Y относительно старой системы хОу будет определено, если известны координаты а и b нового начала O 1 по старой системе и угол α между осями Ох и О 1 Х . Обозначим через х и у координаты произвольной точки М относительно старой системы, через X и Y-координаты той же точки относительно новой системы. Наша задача заключается в том, чтобы старые координаты х и у выразить через новые X и Y. В полученные формулы преобразования должны, очевидно, входить постоянные a, b и α .

Решение этой общей задачи мы получим из рассмотрения двух частных случаев.

1. Меняется начало координат, направления же осей остаются неизменными (α = 0).

2. Меняются направления осей, начало же координат остается неизменным (а = b = 0).

§ 2. Перенос начала координат.

Пусть даны две системы декартовых координат с разными началами O и O 1 и одинаковыми направлениями осей (рис. 69).

Обозначим через а и b координаты нового начала О 1 в старой системе и через х, у и X , Y -координаты произвольной точки М соответственно в старой и новой системах. Проектируя точку М на оси О 1 Х и Ох , а также точку О 1 на ось Ох , получим на оси Ох три точки О, А и Р . Величины отрезков ОА , АР и ОР связаны следующим соотношением:

| ОА | + | АР | = | ОР |. (1)

Заметив, что | ОА | = а , | ОР | = х , | АР | = | О 1 Р 1 | = Х , перепишем равенство (1) в виде:

а + X = x или x = X + а . (2)

Аналогично, проектируя М и О 1 на ось ординат, получим:

y = Y + b (3)

Итак, старая координата равна новой плюс координата нового начала по старой системе.

Из формул (2) и (3) новые координаты можно выразить через старые:

Х = х - а , (2")

Y = y - b . (3")

§ 3. Поворот осей координат.

Пусть даны две декартовы системы координат с одинаковым началом О и разными направлениями осей (рис. 70).

Пусть α есть угол между осями Ох и ОХ . Обозначим через х, у и X, Y координаты произвольной точки М соответственно в старой и новой системах:

х = | ОР | , у = | РM | ,

X = | ОР 1 |, Y = | Р 1 M |.

Рассмотрим ломаную линию ОР 1 MP и возьмем ее проекцию на ось Ох . Замечая, что проекция ломаной линии равна проекции замыкающего отрезка (гл. I, § 8) имеем:

ОР 1 MP = | ОР |. (4)

С другой стороны, проекция ломаной линии равна сумме проекций ее звеньев (гл. I, § 8); следовательно, равенство (4) запишется так:

пр ОР 1 + пр Р 1 M + пp MP = | ОР | (4")

Так как проекция направленного отрезка равна его величине, умноженной на косинус угла между осью проекций и осью, на которой лежит отрезок (гл. I, § 8), то

пр ОР 1 = X cos α

пр Р 1 M = Y cos (90° + α ) = - Y sin α ,

пp MP = 0.

Отсюда равенство (4") нам дает:

x = X cos α - Y sin α . (5)

Аналогично, проектируя ту же ломаную на ось Оу , получим выражение для у . В самом деле, имеем:

пр ОР 1 + пр Р 1 M + пp MP = пp ОР = 0.

Заметив, что

пр ОР 1 = X cos (α - 90°) = X sin α ,

пр Р 1 M = Y cos α ,

пp MP = - y ,

будем иметь:

X sin α + Y cos α - y = 0,

y = X sin α + Y cos α . (6)

Из формул (5) и (6) мы получим новые координаты X и Y выраженными через старые х и у , если разрешим уравнения (5) и (6) относительно X и Y .

Замечание. Формулы (5) и (6) могут быть получены иначе.

Из рис. 71 имеем:

х = ОР = ОМ cos (α + φ ) = ОМ cos α cos φ - ОМ sin α sin φ ,

у = РМ = ОМ sin (α + φ ) = ОМ sin α cos φ + ОМ cos α sin φ .

Так как (гл. I, § 11) OM cos φ = X , ОМ sin φ =Y , то

x = X cos α - Y sin α , (5)

y = X sin α + Y cos α . (6)

§ 4. Общий случай.

Пусть даны две декартовы системы координат с разными началами и разными направлениями осей (рис. 72).

Обозначим через а и b координаты нового начала О , по старой системе, через α -угол поворота координатных осей и, наконец, через х, у и X, Y - координаты произвольной точки М соответственно по старой и новой системам.

Чтобы выразить х и у через X и Y , введем вспомогательную систему координат x 1 O 1 y 1 , начало которой поместим в новом начале О 1 , а направления осей возьмем совпадающими с направлениями старых осей. Пусть x 1 и y 1 , обозначают координаты точки М относительно этой вспомогательной системы. Переходя от старой системы координат к вспомогательной, имеем (§ 2):

х = х 1 + а , у = у 1 + b .

х 1 = X cos α - Y sin α , y 1 = X sin α + Y cos α .

Заменяя х 1 и y 1 в предыдущих формулах их выражениями из последних формул, найдем окончательно:

x = X cos α - Y sin α + a

y = X sin α + Y cos α + b (I)

Формулы (I) содержат как частный случай формулы §§ 2 и 3. Так, при α = 0 формулы (I) обращаются в

x = X + а , y = Y + b ,

а при а = b = 0 имеем:

x = X cos α - Y sin α , y = X sin α + Y cos α .

Из формул (I) мы получим новые координаты X и Y выраженными через старые х и у , если уравнения (I) разрешим относительно X и Y .

Отметим весьма важное свойство формул (I): они линейны относительно X и Y , т. е. вида:

x = AX + BY + C , y = A 1 X + B 1 Y + C 1 .

Легко проверить, что новые координаты X и Y выразятся через старые х и у тоже формулами первой степени относительно х и у.

Г.Н.Яковлев "Геометрия"

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Выбором прямоугольной декартовой системы координат устанавливается взаимно однозначное соответствие между точками плоскости и упорядоченными парами действительных чисел. Это означает, что каждой точке плоскости соответствует единственная пара чисел и каждой упорядоченной паре действительных чисел соответствует единственная точка.

Выбор той или иной системы координат ничем не ограничен и определяется в каждом конкретном случае только соображениями удобства. Часто одно и то же множество приходится рассматривать в разных координатных системах. Одна и та же точка в разных системах имеет, очевидно, различные координаты. Множество точек (в частности, окружность, парабола, прямая) в разных системах координат задается различными уравнениями.

Выясним, как преобразуются координаты точек плоскости при переходе от одной координатной системы к другой.

Пусть на плоскости заданы две прямоугольные системы координат: О, i, j и О", i", j" (рис. 41).

Первую систему с началом в точке О и базисными векторами i и j условимся называть старой, вторую - с началом в точке О" и базисными векторами i" и j" - новой.

Положение новой системы относительно старой будем считать известным: пусть точка О" в старой системе имеет координаты (a;b ), a вектор i" образует с вектором i угол α . Угол α отсчитываем в направлении, противоположном движению часовой стрелки.

Рассмотрим произвольную точку М. Обозначим ее координаты в старой системе через (х;у ), в новой - через (х";у" ). Наша задача - установить зависимость между старыми и новыми координатами точки М.

Соединим попарно точки О и О", О" и М, О и М. По правилу треугольника получаем

OM > = OO" > + O"M > . (1)

Разложим векторы OM > и OO" > по базисным векторам i и j , а вектор O"M > по базисным векторам i" и j" :

OM > = xi + yj , OO" > = ai + bj , O"M > = x"i "+ y"j "

Теперь равенство (1) можно записать так:

xi + yj = (ai + bj ) + (x"i "+ y"j "). (2)

Новые базисные векторы i" и j" раскладываются по старым базисным векторам i и j следующим образом:

i" = cos α i + sin α j ,

j" = cos ( π / 2 + α ) i + sin ( π / 2 + α ) j = - sin α i + cos α j .

Подставив найденные выражения для i" и j" в формулу (2), получим векторное равенство

xi + yj = ai + bj + х" (cos α i + sin α j ) + у" (- sin α i + cos α j )

равносильное двум числовым равенствам:

х = а + х" cos α - у" sin α ,
у
= b + х" sin α + у" cos α

Формулы (3) дают искомые выражения для старых координат х и у точки через ее новые координаты х" и у" . Для того чтобы найти выражения для новых координат через старые, достаточно решить систему уравнении (3) относительно неизвестных х" и у" .

Итак, координаты точек при переносе начала координат в точку (а; b ) и повороте осей на угол α преобразуются по формулам (3).

Если изменяется только начало координат, а направления осей остаются прежними, то, полагая в формулах (3) α = 0, получаем

Формулы (5) называют формулами поворота .

Задача 1. Пусть координаты нового начала в старой системе (2; 3), а координаты точки А в старой системе (4; -1). Найти координаты точки А в новой системе, если направления осей остаются прежними.

По формулам (4) имеем

Ответ. A (2; -4)

Задача 2. Пусть координаты точки Р в старой системе (-2; 1), а в новой системе, направления осей которой те же самые, координаты этой точки (5; 3). Найти координаты нового начала в старой системе.

А По формулам (4) получаем

- 2 = а + 5
1 = b + 3

откуда а = - 7, b = - 2.

Ответ. (-7; -2).

Задача 3. Координаты точки А в новой системе (4; 2). Найти координаты этой точки в старой системе, если начало координат осталось прежним, а оси координат старой системы повернуты на угол α = 45°.

По формулам (5) находим

Задача 4. Координаты точки A в старой системе (2 √3 ; - √3 ). Найти координаты этой точки в новой системе, если начало координат старой системы перенесено в точку (-1;-2), а оси повернуты на угол α = 30°.

По формулам (3) имеем

Решив эту систему уравнений относительно х" и у" , найдем: х" = 4, у" = -2.

Ответ. A (4; -2).

Задача 5. Дано уравнение прямой у = 2х - 6. Найти уравнение той же прямой в новой системе координат, которая получена из старой системы поворотом осей на угол α = 45°.

Формулы поворота в данном случае имеют вид

Заменив в уравнении прямой у = 2х - 6 старые переменные х и у новыми, получим уравнение

√ 2 / 2 (x" + y" ) = 2 √ 2 / 2 (x" - y" ) - 6 ,

которое после упрощений принимает вид y" = x" / 3 - 2√2

4.1. ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ

В топографии наиболее широкое распространение получили прямоугольные координаты. Возьмем на плоскости две взаимно перпендикулярные линии - O Х и OY . Эти линии называют осями координат, а точка их пересечения (O ) - началом координат.

Рис. 4.1. Прямоугольные координаты

Положение любой точки на плоскости можно легко определить, если указать кратчайшие расстояния от осей координат до данной точки. Кратчайшими расстояниями являются перпендикуляры. Расстояния по перпендикулярам от осей координат до данной точки называют прямоугольными координатами этой точки. Отрезки, параллельные оси X , называют координатами х А , а параллельные оси Y - координатами у А .
Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу часовой стрелки от положительного направления оси абсцисс - I, II, III, IV (рис. 4.1).
Прямоугольные координаты, о которых шла речь, применяют на плоскости. Отсюда они получили название плоских прямоугольных координат. Эту систему координат применяют на небольших участках местности, принимаемых за плоскость.

4.2. ЗОНАЛЬНАЯ СИСТЕМА ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА

При рассмотрении вопроса «Проекции топографических карт» было отмечено, что поверхность Земли проектируется на поверхность цилиндра, который касается поверхности Земли по осевому меридиану. При этом на цилиндр проектируется не вся поверхность Земли, а лишь часть ее, ограниченная 3° долготы на запад и 3° на восток от осевого меридиана. Поскольку каждая из проекций Гаусса передает на плоскость только фрагмент поверхности Земли, ограниченный меридианами через 6° долготы, то всего на поверхность Земли должно быть составлено 60 проекций (60 зон). В каждой из 60 проекций образуется отдельная система прямоугольных координат.
В каждой зоне осью X является средний (осевой) меридиан зоны, вынесенный западнее на 500 км от своего фактического положения, а осью Y - экватор (рис. 4.2).


Рис. 4.2. Система прямоугольных координат
на топографических картах

Пересечение вынесенного осевого меридиана с экватором будет началом координат: х = 0, у = 0 . Точка пересечения экватора и фактического осевого меридиана имеет координаты: х = 0, у = 500 км.
В каждой зоне имеется свое начало координат. Счет зон ведется от Гринвичского меридиана на восток. Первая шестиградусная зона расположена между Гринвичским меридианом и меридианом с восточной долготой 6º(осевой меридиан 3º). Вторая зона - 6º в.д. - 12º в.д (осевой меридиан 9º). Третья зона - 12º в.д. - 18º в.д. (осевой меридиан 15º). Четвертая зона - 18º в.д. - 24º в.д. (осевой меридиан 21º) и т.д.
Номер зоны обозначен в координате у первой цифрой. Например, запись у = 4 525 340 означает, что заданная точка находится в четвертой зоне (первая цифра) на расстоянии 525 340 м от осевого меридиана зоны, вынесенного западнее 500 км.

Чтобы определить номер зоны по географическим координатам, необходимо к долготе, выраженной в целых числах градусов, прибавить 6 и полученную сумму разделить на 6. В результате деления оставляем только целое число.

Пример. Определить номер зоны Гаусса для точки, имеющей восточную долготу 18º10".
Решение. К целому числу градусов долготы 18 прибавляем 6 и сумму делим на 6
(18 + 6) / 6 = 4.
Наша карта находится в четвертой зоне.

Затруднения при использовании зональной системы координат возникают в тех случаях, когда топографо-геодезические работы проводятся на приграничных участках, расположенных в двух соседних (смежных) зонах. Координатные линии таких зон располагаются под углом друг к другу (рис 4.3).

Для ликвидации возникающих осложнений введена полоса перекрытия зон , в которой координаты точек могут быть вычислены в двух смежных системах. Ширина полосы перекрытия 4°, по 2° в каждой зоне.

Дополнительная сетка на карте наносится лишь в виде выходов ее линий между минутной и внешней рамками. Оцифровка ее является продолжением оцифровки линий сетки смежной зоны. Линии дополнительной сетки подписывают за внешней рамкой листа . Следовательно, на листе карты, расположенном в восточной зоне, при соединении одноименных выходов дополнительной сетки получают километровую сетку западной зоны. Пользуясь этой сеткой, можно определить, например, прямоугольные координаты точки В в системе прямоугольных координат западной зоны, т. е. прямоугольные координаты точек А и В будут получены в одной системе координат западной зоны.

Рис. 4.3. Дополнительные километровые линии на границе зон

На карте масштаба 1:10 000 дополнительная сетка разбивается только на тех листах, у которых восточный или западный меридиан внутренней рамки (рамки трапеции) является границей зоны. На топографических планах дополнительная сетка не наносится.

4.3. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ ЦИРКУЛЯ-ИЗМЕРИТЕЛЯ

Важным элементом топографической карты (плана) является прямоугольная сетка. На все листы данной 6-градусной зоны сетку наносят в виде рядов линий, параллельных осевому меридиану и экватору (рис. 4.2). Вертикальные линии сетки параллельны осевому меридиану зоны, а горизонтальные - экватору. Счет горизонтальных километровых линий ведется снизу вверх, а вертикальных - слева направо .

Интервалы между линиями на картах масштабов 1:200 000 - 1:50 000 составляют 2 см, 1:25 000 - 4 см, 1:10 000 - 10 см, что соответствует целому числу километров на местности. Поэтому прямоугольную сетку называют еще километровой , а ее линии - километровыми .
Километровые линии, ближайшие к углам рамки листа карты, подписывают полным числом километров, остальные - двумя последними цифрами. Надпись 60 65 (см. рис. 4.4) на одной из горизонтальных линий означает, что эта линия удалена oт экватора на 6065 км (к северу): надпись 43 07 у вертикальной линии означает, что она находится в четвертой зоне и удалена от начала счета ординат к востоку на 307 км. Если около вертикальной километровой линии записано трехзначное число мелкими цифрами, две первые обозначают номер зоны .

Пример. Надо определить по карте прямоугольные координаты точки местности, например, пункта государственной геодезической сети (ГГС) с отметкой 214,3 (рис. 4.4). Сначала записывают (в километрах) абсциссу южной стороны квадрата, в котором находится эта точка (т. е. 6065). Затем с помощью циркуля-измерителя и линейного масштаба определяют длину перпендикуляра Δх = 550 м , опушенного из заданной точки на эту линию. Полученную величину (в данном случае 550 м) добавляют к абсциссе линии. Число 6 065 550 есть абсцисса х пункта ГГС.
Ордината пункта ГГС равна ординате западной стороны того же квадрата (4307 км), сложенной с длиной перпендикуляра Δу = 250 м, измеренного по карте. Число 4 307 250 есть ордината того же пункта.
При отсутствии циркуля-измерителя расстояния измеряют линейкой или полоской бумаги .

х = 6065550, у = 4307250
Рис. 4.4. Определение прямоугольных координат с помощью линейного масштаба

4.4. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ КООРДИНАТОМЕРА

Координатомер - небольшой угольник с двумя перпендикулярными сторонами. По внутренним ребрам линеек нанесены шкалы, длины которых равны длине стороны координатных клеток карты данного масштаба. Деления на координатомер переносят с линейного масштаба карты.
Горизонтальная шкала совмещается с нижней линией квадрата (в котором находится точка), а вертикальная шкала должна проходить через данную точку. По шкалам определяют расстояния от точки до километровых линий.


х А = 6135 350 у А = 5577 710
Рис. 4.5. Определение прямоугольных координат с помощью координатомера

4.5. НАНЕСЕНИЕ НА КАРТУ ТОЧЕК ПО ЗАДАННЫМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ

Чтобы нанести на карту точку по заданным прямоугольным координатам, поступают следующим образом: в записи координат находят двузначные числа, которыми сокращенно обозначены линии прямоугольной сетки. По первому числу находят на карте горизонтальную линию сетки, по второму - вертикальную. Их пересечение образует юго-западный угол квадрата, в котором лежит искомая точка. На восточной и западной сторонах квадрата откладывают от его южной стороны два равных отрезка, соответствующих в масштабе карты числу метров в абсциссе х . Концы отрезков соединяют прямой линией и на ней от западной стороны квадрата откладывают в масштабе карты отрезок, соответствующий числу метров в ординате; конец этого отрезка является искомой точкой.

4.6. ВЫЧИСЛЕНИЕ ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА ПО ГЕОГРАФИЧЕСКИМ КООРДИНАТАМ

Плоские прямоугольные координаты Гаусса х и у весьма сложно связаны с географическими координатами φ (широта) и λ (долгота) точек земной поверхности. Предположим, что некоторая точка А имеет географические координаты φ и λ . Поскольку разность долгот граничных меридианов зоны равна 6°, то соответственно для каждой из зон можно получить долготы крайних меридианов: 1-я зона (0° - 6°), 2-я зона (6° - 12°), 3-я зона (12° - 18°) и т.д. Таким образом, по географической долготе точки А можно определить номер зоны, в которой эта точка находится. При этом долгота λ ос осевого меридиана зоны определится по формуле
λ ос = (6°n - 3°),
в которой n - номер зоны.

Для определения плоских прямоугольных координат х и у по географическим координатам φ и λ воспользуемся формулами, выведенными для референц-эллипсоида Красовского (референц-эллипсоид - фигура, максимально приближенная к фигуре Земли в той ее части, на которой находится данное государство, либо группа государств):

х = 6367558,4969 (φ рад ) − {a 0 − l 2 N}sin φ cos φ (4.1)
у (l) = lNcos φ (4.2)

В формулах (4.1) и (4.2) приняты следующие обозначения:
у(l) - расстояние от точки до осевого меридиана зоны;
l = (λ - λ ос ) - разность долгот определяемой точки и осевого меридиана зоны);
φ рад - широта точки, выраженная в радианной мере;
N = 6399698,902 - cos 2 φ;
а 0 = 32140,404 - cos 2 φ;
а 3 = (0,3333333 + 0,001123 cos 2 φ) cos 2 φ - 0,1666667;
а 4 = (0,25 + 0,00252 cos 2 φ) cos 2 φ - 0,04166;
а 5 = 0,0083 - cos 2 φ;
а 6 = (0,166 cos 2 φ - 0,084) cos 2 φ.
у" - расстояние от осевого меридиана отнесенного западнее 500 км.

По формуле (4.1) значение координаты у(l) получают относительно осевого меридиана зоны, т.е. оно может получиться со знаками «плюс» для восточной части зоны или «минус» - для западной части зоны. Для записи координаты y в зональной системе координат необходимо вычислить расстояние до точки от осевого меридиана зоны, отнесенного западнее на 500 км"в таблице) , а впереди полученного значения приписать номер зоны. Например, получено значение
у(l) = -303678,774 м в 47 зоне.
Тогда
у = 47 (500000,000 - 303678,774) = 47196321,226 м.
Для вычислений используем электронные таблицы MicrosoftXL .

Пример . Вычислить прямоугольные координаты точки, имеющей географические координаты:
φ = 47º02"15,0543" с.ш.; λ = 65º01"38,2456" в.д.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.1).

Таблица 4.1.

D

E

F

Параметр

Вычисления

Град

φ (град)

D2+E2/60+F2/3600

φ (рад)

РАДИАНЫ(C3)

Cos 2 φ

№ зоны

ЦЕЛОЕ((D8+6)/6)

λос (град)

l (град)

D11+E11/60+F11/3600

l (рад)

РАДИАНЫ(C12)

6399698,902-((21562,267-
(108,973-0,612*C6^2)*C6^2))*C6^2

а 0

32140,404-((135,3302-
(0,7092-0,004*C6^2)*C6^2))*C6^2

а 4

=(0,25+0,00252*C6^2)*C6^2-0,04166

а 6

=(0,166*C6^2-0,084)*C6^2

а 3

=(0,3333333+0,001123*C6^2)*C6^2-0,1666667

а 5

0,0083-((0,1667-(0,1968+0,004*C6^2)*C6^2))*C6^2

6367558,4969*C4-(((C15-(((0,5+(C16+C17*C20)*C20))

*C20*C14)))*C5*C6)

=((1+(C18+C19*C20)*C20))*C13*C14*C6

ОКРУГЛ((500000+C23);3)

СЦЕПИТЬ(C9;C24)


Вид таблицы после вычислений (таб. 4.2).

Таблица 4.2.

Параметр

Вычисления

Град

φ (град, мин, сек)

φ (градусы)

φ (радианы)

Cos 2 φ

λ (град, мин, сек)

Номер зоны

λос (град)

l (мин, сек)

l (градусы)

l (радианы)

а 0

а 4

а 6

а 3

а 5


4.7. ВЫЧИСЛЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ ПО ПЛОСКИМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ ГАУССА

Для решения данной задачи также используются формулы пересчета, полученные для референц-эллипсоида Красовского.
Предположим, что нам необходимо вычислить географические координаты φ и λ точки А по ее плоским прямоугольным координатам х и у , заданным в зональной системе координат. При этом значение координаты у записано с указанием номера зоны и с учетом переноса осевого меридиана зоны западнее на 500 км.
Предварительно по значению у находят номер зоны, в которой расположена определяемая точка, по номеру зоны определяют долготу λ o осевого меридиана и по расстоянию от точки до отнесенного на запад осевого меридиана находят расстояние у(l) от точки до осевого меридиана зоны (последнее может быть со знаком плюс или минус).
Значения географических координат φ и λ по плоским прямоугольным координатам х и у находят по формулам:
φ = φ х - z 2 b 2 ρ″ (4.3)
λ = λ 0 + l (4.4)
l = zρ″ (4.5)

В формулах (4.3) и (4.5) :
φ х ″= β″ +{50221746 + cos 2 β}10-10sinβcosβ ρ″;
β″ = (Х / 6367558,4969) ρ″; ρ″ = 206264,8062″ - число секунд в одном радиане
z = У(L) / (Nx сos φx);
N х = 6399698,902 - cos 2 φ х;
b 2 = (0,5 + 0,003369 cos 2 φ х) sin φ х cos φ х;
b 3 = 0,333333 - (0,166667 - 0,001123 cos2 φ х) cos2 φ х;
b 4 = 0,25 + (0,16161 + 0,00562 сos 2 φ х) cos 2 φ х;
b 5 = 0,2 - (0,1667 - 0,0088 сos 2 φ х) cos 2 φ х.

Для вычислений используем электронные таблицы MicrosoftXL .
Пример . Вычислить географические координаты точки по прямоугольным:
x = 5213504,619; y = 11654079,966.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.3).

Таблица 4.3.

1

Параметр

Вычисление

Град.

Мин.

Сек.

2

1

х

5213504,619

2

у

11654079,966

4

3

№*зоны

ЕСЛИ(C3<1000000;
C3/100000;C3/1000000)

5

4

№ зоны

ЦЕЛОЕ(C4)

6

5

λоос

C5*6-3

7

6

у"

C3-C5*1000000

8

7

у(l)

C7-500000

9

8

ρ″

206264,8062

10

9

β"

C2/6367558,4969*C9

11

10

β рад

РАДИАНЫ(C10/3600)

12

11

β

ЦЕЛОЕ
(C10/3600)

ЦЕЛОЕ
((C10-D12*3600)/60)

C10-D12*
3600-E12*60

13

12

Sin β

SIN(C11)

14

13

Cos β

COS(C11)

15

14

Cos 2 β

C14^2

16

15

φ х "

C10+(((50221746+((293622+
(2350+22*C14^2)*C14^2))*C14^2)))
*10^-10*C13*C14*C9

17

16

φ х рад

РАДИАНЫ(C16/3600)

18

17

φ х

ЦЕЛОЕ
(C16/3600)

ЦЕЛОЕ
((C16-D18*3600)/60)

C16-D18*
3600-E18*60

19

18

Sin φ.

SIN(C17)

20

19

Cos φ х

COS(C17)

21

20

Cos 2 φ х

C20^2

22

21

N х

6399698,902-((21562,267-
(108,973-0,612*C21)*C21))*C21

23

22

Ν х Cosφ х

C22*C20

24

23

z

C8/(C22*C20)

25

24

z 2

C24^2

26

25

b 4

0,25+(0,16161+0,00562*C21)*C21

27

26

b 2

=(0,5+0,003369*C21)*C19*C20

28

27

b 3

0,333333-(0,166667-0,001123*C21)*C21

29

28

b 5

0,2-(0,1667-0,0088*C21)*C21

30

29

C16-((1-(C26-0,12
*C25)*C25))*C25*C27*C9

31

30

φ

=ЦЕЛОЕ
(C30/3600)

=ЦЕЛОЕ
((C30-D31*3600)/60)

=C30-D31*
3600-E31*60

32

31

l"

=((1-(C28-C29*C25)*C25))*C24*C9

33

32

l 0

=ЦЕЛОЕ
(C32/3600)

=ЦЕЛОЕ
((C32-D33*3600)/60)

=C32-D33*
3600-E33*60

34

33

λ

C6+D33


Вид таблицы после вычислений (таб. 4.4).

Таблица 4.4.

Параметр

Вычисление

Град.

Номер зоны *

Номер зоны

λоос (град)

у"

β рад

Cos 2 β

φ х "

φ х рад

φ х

Cos φ х

Cos 2 φ х

N х

Ν х Cos φ х

z 2

b 4

b 2

b 3

b 5

φ

l 0

λ

Если вычисления произведены верно, копируем обе таблицы на один лист, скрываем строки промежуточных вычислений и колонку № п/п, а оставляем только строки ввода исходных данных и результатов вычислений. Форматируем таблицу и корректируем названия колонок и столбцов по вашему усмотрению.

Рабочие таблицы могут выглядеть так

Таблица 4.5.


Примечания .
1. В зависимости от требуемой точности можно увеличить или уменьшить разрядность.
2. Количество строк в таблице можно сократить, объединив вычисления. Например, радианы угла не вычислять отдельно, а сразу записать в формулу =SIN(РАДИАНЫ(C3)).
3. Округление в п. 23 табл. 4.1. производим для «сцепления». Число разрядов в округлении 3.
4. Если не изменить формат ячеек в колонках «Град» и «Мин», то нулей перед цифрами не будет. Изменение формата здесь выполнено только для зрительного восприятия (по решению автора) и на результаты вычислений не влияет.
5. Чтобы случайно не повредить формулы, следует защитить таблицу: Сервис / Защитить лист. Перед защитой выделить ячейки для ввода исходных данных, а затем: Формат ячеек / Защита / Защищенная ячейка - убрать галочку.

4.8. СВЯЗЬ ПЛОСКОЙ ПРЯМОУГОЛЬНОЙ И ПОЛЯРНОЙ СИСТЕМ КООРДИНАТ

Простота полярной системы координат и возможность ее построения относительно любой точки местности, принимаемой за полюс, обусловили ее широкое применение в топографии. Чтобы связать воедино полярные системы отдельных точек местности, необходимо перейти к определению положения последних в прямоугольной системе координат, которая может быть распространена на значительно большую по площади территорию. Связь между двумя системами устанавливается решением прямой и обратной геодезических задач.
Прямая геодезическая задача состоит в определении координат конечной точки В (рис. 4.4) линии АВ по длине ее горизонтального проложения d , направлению α и координатам начальной точки х А , у А .


Рис. 4.6. Решение прямой и обратной геодезических задач

Так, если принять точку А (рис. 4.4) за полюс полярной системы координат, а прямую АВ - за полярную ось, параллельную оси ОХ , то полярными координатами точки В будут d и α . Необходимо вычислить прямоугольные координаты этой точки в системе ХОУ.

Из рис. 3.4 видно, что х В отличается от х А на величину (х В - х А ) = Δх АВ , а у В отличается от у А на величину (у В - у А ) = Δу АВ . Разности координат конечной В и начальной А точек линии АВ Δх и Δу называют приращениями координат . Приращениями координат являются ортогональные проекции линии АВ на оси координат. Координаты х В и у В могут быть вычислены по формулам:

х В = х А + Δх АВ (4.1)
у В = у А + Δу АВ (4.2)

Значения приращений определяют из прямоугольного треугольника АСВ по заданным d и α, так как приращения Δх и Δу являются катетами этого прямоугольного треугольника:

Δх АВ =d cos α (4.3)
Δу АВ = d sin α (4.4)

Знак приращений координат зависит от угла положения.

Таблица 4.1.

Подставив значение приращений Δх АВ и Δу АВ в формулы (3.1 и 3.2), получим формулы для решения прямой геодезической задачи:

х В = х А + d cos α (4.5)
у В = у А + d sin α (4.6)

Обратная геодезическая задача заключается в определении длины горизонтального проложения d и направления α линии АВ по данным координатам ее начальной точки А (хА, уА) и конечной В (хВ, уВ). Угол направления вычисляется по катетам прямоугольного треугольника:

tg α = (4.7)

Горизонтальное проложение d , определяют по формуле:

d = (4.8)

Для решения прямой и обратной геодезической задачи можно воспользоваться электронными таблицами Microsoft Excel .

Пример .
Задана точка А с координатами: х А = 6068318,25; у А = 4313450,37. Горизонтальное проложение (d) между точкой А и точкой В равно 5248,36 м. Угол между северным направлением оси ОХ и направлением на точку В (угол положения - α ) равен 30º.

Рассчитать прямоугольные координаты точки В (х В , у В ).

Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.2).

Таблица 4.2.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

B4*COS(РАДИАНЫ(B5))

Δу АВ = d sin α

B4*SIN(РАДИАНЫ(B5))

х В

у В


Вид таблицы после вычислений (таб. 4.3) .

Таблица 4.3.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

Δу АВ = d sin α

х В

у В

Пример .
Заданы точки А и В с координатами:
х А = 6068318,25; у А = 4313450,37;
х В = 6072863,46; у В = 4313450,37.
Рассчитать горизонтальное проложение d между точкой А и точкой В, а также угол α между северным направлением оси ОХ и направлением на точку В .
Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.4).

Таблица 4.4.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

КОРЕНЬ(B7^2+B8^2)

Тангенс

Арктангенс

Градусы

ГРАДУСЫ(B11)

Выбор

ЕСЛИ(B12<0;B12+180;B12)

Угол положения (град)

ЕСЛИ(B8<0;B13+180;B13)

Вид таблицы после вычислений (таб. 4.5).

Таблица 4.5.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

Тангенс

Арктангенс

Градусы

Выбор

Угол положения (град)

Если ваши вычисления совпали с вычислениями учебного пособия, скройте промежуточные расчеты, отформатируйте и защитите таблицу.

Видео
Прямоугольные координаты

Вопросы и задания для самоконтроля

  1. Какие величины называют прямоугольными координатами?
  2. На какой поверхности применяют прямоугольные координаты?
  3. В чем заключается суть зональной системы прямоугольных координат?
  4. Назовите номер шестиградусной зоны, в которой находится г. Луганск с координатами: 48°35′ с.ш. 39°20′ в.д.
  5. Рассчитайте долготу осевого меридиана шестиградусной зоны, в которой находится г. Луганск.
  6. Как ведется счет координат х и у в прямоугольной системе координат Гаусса?
  7. Объясните порядок определения прямоугольных координат на топографической карте с помощью циркуля-измерителя.
  8. Объясните порядок определения прямоугольных координат на топографической карте с помощью координатомера.
  9. В чем сущность прямой геодезической задачи?
  10. В чем сущность обратной геодезической задачи?
  11. Какую величину называют приращением координат?
  12. Дайте определения синуса, косинуса, тангенса и котангенса угла.
  13. Как можно применить в топографии теорему Пифагора о соотношении между сторонами прямоугольного треугольника?

ВВЕДЕНИЕ

Координаты — это величины, определяющие положение любой точки на поверхности или в пространстве относительно принятой системы координат.
Система координат устанавливает начальные (исходные) точки, поверхности или линии отсчета необходимых величин — начало отсчета координат, единицы их исчисления. В топографии и геодезии наибольшее применение получили системы географических, прямоугольных и полярных координат.
Система географических координат применяется для определения положения точек Земли на эллипсоиде или шаре. Исходными плоскостями в этой системе являются плоскости начального меридиана и экватора, а координатами — угловые величины: долгота и широта точки.
Из первой темы известно, что меридиан - это линия сечения эллипсоида плоскостью проходящей через данную точку и полярную ось вращения Земли.
Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и перпендикулярную земной оси РР". Параллель, проходящая через центр эллипсоида, называется экватором.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими , во втором - геодезическими . При астрономических наблюдениях проектирование точек на поверхность осуществляется отвесными линиями, при геодезических измерениях - нормалями, поэтому величины астрономических и геодезических географических координат несколько отличаются.
К системам координат, которые наиболее часто применяют в геодези, относятся геодезическая, астрономическая, сферическая, плоская прямоугольная, полярная и биполярная.

3.1. ГЕОДЕЗИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Геодезическими координатами называются угловые величины (широта и долгота), определяющие положение точек (объектов) на поверхности земного эллипсоида (референц-эллипсоида) относительно плоскости экватора и начального меридиана.
Геодезической широтой (В ) называется угол, заключенный между плоскостью экватора и нормалью к поверхности земного эллипсоида, проходящей через данную точку.

Рис. 3.1. Геодезическая система координат

Счет геодезических широт ведется от 0 до 90° к северу и к югу от экватора. Геодезические широты Северного полушария называются северными и имеют знак « + », а Южного — южными и имеют знак «—». Геодезическая широта измеряется центральным углом в плоскости меридиана.
Геодезическая широта (в градусах) показывает, насколько данная точка на земном эллипсоиде расположена севернее или южнее плоскости экватора.
Геодезическая широта для точек, расположенных на экваторе, будет равна 0°, а для точек, расположенных на полюсах ± 90°.
Геодезической долготой (L ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью геодезического меридиана, проходящего через данную точку.
В старину в отдельных государствах за начальный меридиан принимали меридиан, проходящий через свою главную обсерваторию. В настоящее время в Украине и в большинстве стран мира для единообразия в определении долгот условились начальным считать Гринвичский меридиан , проходящий через астрономическую обсерваторию в Гринвиче (близ Лондона). От этого меридиана ведется счет так называемого международного гринвичского времени.
Геодезическая долгота измеряется либо центральным углом в плоскости экватора или параллели, либо дугой экватора от начального (Гринвичского) меридиана до меридиана, проходящего через данную точку (М ), в пределах от 0 до 180° к востоку или к западу. Геодезические долготы для точек, расположенных к востоку от меридиана Гринвича до 180°, называются восточными и считаются положительными, а к западу - западными и считаются отрицательными.
Восточная долгота обозначается буквами (в.д .) или знаком « + », западная долгота — буквами (з.д .) или знаком « - ».
Геодезическая система координат, отнесенная к эллипсоиду Красовского, была разработана в 1942 - 1943 годах, поэтому она получила название системы координат 1942 года. Вместе с ней была принята Балтийская система высот, по которой ведется отсчет абсолютных высот относительно нуля Кронштадтского футштока (Футшток — специальная рейка с делениями).

3.2. АСТРОНОМИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Астрономические координаты определяют положение точки на поверхности геоида. Их можно получить путем астрономических измерений с помощью геодезических инструментов или путем математической обработки результатов геодезических измерений.
Астрономической широтой (φ ) называется угол, заключенный между плоскостью земного экватора и направлением отвесной линии в данной точке.
Астрономическая широта измеряется от 0 до 90° к северу и к югу от экватора. В Северном полушарии астрономические широты называются северными, а в Южном — южными.
Отвесная линия в общем случае не совпадает с направлением нормали к поверхности земного эллипсоида. Поскольку различные по плотности массы в теле Земли распределены неравномерно, то отклонение отвесной линии (силы тяжести) от нормали различное в разных точках Земли. Так, например, в районе Кавказа отклонения отвесных линий от нормалей достигают 35", а разность отклонений отвесных линий на противоположных берегах озера Байкал достигает 40". В среднем величина отклонений равна 4 - 5" (рис. 3.2).

Рис. 3.2. Астрономическая система координат

Астрономической долготой (λ) называется двугранный угол, заключенный между плоскостью начального астрономического меридиана и плоскостью астрономического меридиана, проходящего через данную точку .
Поскольку плоскость астрономического меридиана проходит через отвесную линию в данной точке на поверхности Земли, а плоскость геодезического меридиана проходит через нормаль к поверхности эллипсоида, следовательно, плоскости астрономического и геодезического меридианов не совпадают. В результате этого геодезическая широта, долгота и геодезический азимут в данной точке отличаются от астрономической широты, долготы, и астрономического (истинного) азимута. Эти расхождения будут увеличиваться там, где наблюдаются большие отклонения отвесной линии от нормали, а также в тех точках геоида, где его поверхность дальше удалена от поверхности эллипсоида.
Геодезическая и астрономическая системы координат различаются как две отдельные системы при определении местоположения объектов с точностью до 1" (в линейной величине до 20 - 30 м ). Зная астрономические координаты, можно вычислить геодезические координаты путем ввода поправок на уклонение отвесных линий от нормалей, определяемых астрономо-геодезическим методом или по специальным гравиметрическим картам.

3.3. СФЕРИЧЕСКАЯ СИСТЕМА КООРДИНАТ

При решении ряда геодезических задач и составлении карт мелких масштабов Землю принимают за сферу. Положение точек местности на сфере определяется сферическими координатами: сферической широтой и сферической долготой.
Сферическими координатами называются угловые величины (широта и долгота), определяющие положение точек местности на поверхности земной сферы относительно плоскости экватора и начального меридиана (рис. 3.2).
Сферической широтой (φ ) называется угол, заключенный между плоскостью экватора и направлением из центра земной сферы на данную точку. Сферическая широта измеряется центральным углом или дугой меридиана в тех же пределах, что и геодезическая широта - от 0 до 90° к северу и к югу от экватора. Сферические широты в Северном полушарии называются северными и обозначаются знаком «+», а в Южном - южными и обозначаются знаком «-».
Сферической долготой (λ ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.
Сферическая долгота измеряется либо центральным углом в плоскости экватора или в плоскости параллели, либо дугой экватора или дугой параллели от началь-ного (Гринвичского) меридиана до меридиана, проходящего через данную точку в пределах от 0 до 180° к востоку и к западу.

Рис. 3.3. Сферическая система координат

Сферические долготы для точек, расположенных к востоку от Гринвичского меридиана до 180°, называются восточными и считаются положительными, а к западу — западными и считаются отрицательными. При решении некоторых практических задач сферическая долгота отсчитывается от 0 до 360° только к востоку от Гринвичского меридиана.
Все вычисления, связанные с автоматизированным определением координат, углов и расстояний, решаются на поверхности земной сферы с использованием формул сферической тригонометрии, поэтому поверхность земного эллипсоида проектируется на поверхность сферы.
В практике часто пользуются сферой радиусом R = 6371 км , поверхность которой равна поверхности эллипсоида. При этом максимальные погрешности в определении расстояний достигают 0,5% и углов не более 0,4°.
Длина дуги большого круга на сфере в 1секунду, равная 1852 м , называется морской милей .
Вышеназванные погрешности не позволяют реализовать точность современных средств автоматизированного определения координат. Поэтому в современных вычислителях с ЦВМ применяется формулы с учетом сжатия Земли. При этом максимальные искажения расстояний составляют 0,08% - 0,17%, а искажения углов практически отсутствуют.

3.4. ПОЛЯРНАЯ И БИПОЛЯРНАЯ СИСТЕМЫ КООРДИНАТ

Полярными координатами называются угловая и линейная величины, определяющие положение точки на плоскости относительно начала координат, принимаемого за полюс , и полярной оси . Местоположение любой точки определяется углом положения , отсчитанным от полярной оси до направления на определяемую точку, и расстоянием от полюса до этой точки (рис. 3.4).


Рис. 3.4. Полярная система координат

За полярную ось могут быть приняты: истинный или магнитный меридиан, вертикальная линия сетки и направление на любой ориентир.
При работе на местности за полярную ось принимают северное направление магнитного меридиана или направление на какой-нибудь ориентир с точки стояния.

Биполярными координатами называются две угловые или две линейные величины, определяющие местоположение точки на плоскости относительно двух исходных точек (полюсов). Положение любой точки на карте или на местности определяется двумя координатами. Этими координатами могут быть два угла положения либо два расстояния от полюсов до определяемой точки (рис. 3.5, 3.6).


Рис. 3.5. Определение места точки по двум дирекционным углам


Рис. 3.6. Определение места точки по двум дальностям

3.5. СИСТЕМА ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ

Плоскими прямоугольными геодезическими координатами (прямоугольными координатами) называются линейные величины — абсцисса и ордината,— определяющие положение точки на плоскости относительно исходных направлений.

Рис. 3.7. Система плоских прямоугольных координат

Исходными направлениями служат две взаимно перпендикулярные линии (рис. 3.7) с началом отсчета в точке их пересечения (О). Прямая XX является осью абсцисс, а прямая УУ, перпендикулярная к оси абсцисс, — осью ординат. В такой системе положение любой точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Так, положение точки А определяется длиной перпендикуляров ха и уа. Отрезок ха называется абсциссой точки А, а уа — ординатой. Выражаются абсциссы и ординаты в линейной мере (обычно в метрах).
В геодезии и топографии принята правая система прямоугольных координат: это отличает ее от левой системы координат, используемой в математике. Четверти системы координат (название которых определяется принятыми обозначениями стран света), нумеруются по ходу часовой стрелки. В такой системе упрощается измерение углов ориентирования.
Абсциссы точек, расположенных вверх от начала координат, считаются положительными, а вниз от нее — отрицательными.
Ординаты точек, расположенных вправо от начала координат, считаются положительными, а влево от нее — отрицательными (см. табл. 1.2).

Таблица 1.1

Четверти

Координаты

I
II
III
IV

Северо-восток (СВ)
Юго-восток (ЮВ)
Юго-запад (ЮЗ)
Северо-запад (СЗ)

+


+

+
+

Система плоских прямоугольных координат применяется на ограниченных участках земной поверхности, которые могут быть приняты за плоские.
Для небольших участков начало отсчета координат может быть в любой точке участка (система с условным началом координат). В государственной системе координат за ось ординат принимают линию экватора, за ось абсцисс — направление меридиана, который называется осевым (он совпадает с направлением одной из осей системы прямоугольных координат). При проведении работ на значительных по площади территориях осевыми выбирают несколько меридианов.

3.6. ОПРЕДЕЛЕНИЕ ГЕОДЕЗИЧЕСКИХ КООРДИНАТ ТОЧЕК ПО КАРТЕ

Топографические карты печатаются отдельными листами, размеры которых установлены для каждого масштаба. Боковыми рамками листов служат меридианы, а верхней и нижней рамками - параллели . (рис. 3.9). Следовательно, географические координаты можно определить по боковым рамкам топографической карты . На всех картах верхняя рамка всегда обращена на север.
Географическую широту и долготу подписывают в углах каждого листа карты. На картах Западного полушария в северо-западном углу рамки каждого листа правее значения долготы меридиана помещают надпись: «К западу от Гринвича».
На картах масштабов 1: 25 000 - 1: 200 000 стороны рамок разделены на отрезки, равные 1′ (одной минуте, рис. 3.8). Эти отрезки оттенены через один и разделены точками (кроме карты масштаба 1: 200 000) на части по 10" (десять секунд). На каждом листе карты масштабов 1: 50 000 и 1: 100 000 показывают, кроме того, пересечение среднего меридиана и средней параллели с оцифровкой в градусах и минутах, а по внутренней рамке - выходы минутных делений штрихами длиной 2 - 3 мм. Это позволяет при необходимости прочерчивать параллели и меридианы на карте, склеенной из нескольких листов.


Рис. 3.8. Боковые рамки карты

При составлении карт масштабов 1: 500 000 и 1: 1 000 000 на них наносят картографическую сетку параллелей и меридианов. Параллели проводят соответственно через 20′ и 40" (минут), а меридианы - через 30" и 1°.
Географические координаты точки определяют от ближайшей параллели и от ближайшего меридиана, широта и долгота которых известны. Например, для карты масштаба 1: 50 000 «ЗАГОРЯНИ» ближайшими параллелями будут параллели с широтами 54º40′ и 54º50′, а ближайшими меридианами будут меридиан с долготами 18º00′ и 18º15′ (рис. 3.10).


Рис. 3.9. Определение географических координат

Для определения широты заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайшую параллель (для нашей карты 54º40′);
  • не меняя раствор циркуля-измерителя установить его на боковую рамку с минутными и секундными делениями, одна ножка должна быть на южной параллели (для нашей карты 54º40′), а другая - между 10-секундными точками на рамке;
  • посчитать количество минут и секунд от южной параллели до второй ножки циркуля-измерителя;
  • добавить полученный результат к южной широте (для нашей карты 54º40′).

Для определения долготы заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайший меридиан (для нашей карты 18º00′);
  • не меняя раствор циркуля-измерителя установить его на ближайшую горизонтальную рамку с минутными и секундными делениями (для нашей карты нижнюю рамку), одна ножка должна быть на ближайшем меридиане (для нашей карты 18º00′), а другая - между 10-секундными точками на горизонтальной рамке;
  • посчитать количество минут и секунд от западного (левого) меридиана до второй ножки циркуля-измерителя;
  • добавить полученный результат к долготе западного меридиана (для нашей карты 18º00′).

Обратите внимание на то, что данный способ определения долготы заданной точки для карт масштаба 1:50 000 и мельче имеет погрешность за счет схождения меридианов, ограничивающих топографическую карту с востока и запада. Северная сторона рамки будет короче, чем южная. Следовательно, расхождения между измерениями долготы на северной и южной рамке могут отличаться на несколько секунд. Чтобы добиться высокой точности в результатах измерений необходимо определить долготу и по южной и по северной стороне рамки, а затем произвести интерполяцию.
Для повышения точности определения географических координат можно использовать графический метод . Для этого необходимо соединить прямыми линиями ближайшие к точке одноименные десятисекундные деления по широте к югу от точки и по долготе к западу от нее. Затем определить размеры отрезков по широте и долготе от прочерченных линий до положения точки и суммировать их соответственно с широтой и долготой прочерченных линий.
Точность определения географических координат по картам масштабов 1: 25 000 - 1: 200 000 составляет 2′′ и 10′′ соответственно.

Вопросы и задания для самоконтроля

  1. Какие плоскости в системе географических координат являются исходными?
  2. Дайте определения «геодезические координаты», «геодезическая широта», «геодезическая долгота».
  3. В каких пределах измеряется геодезическая широта и геодезическая долгота?
  4. Чему равна геодезическая широта точек, расположенных на экваторе и на южном полюсе?

Каждый современный человек обязан знать, что такое система координат. Ежедневно мы сталкиваемся с такими системами, даже не задумываясь, что они собой представляют. Когда-то в школе мы учили базовые понятия, примерно знаем что есть ось иксов, ось игреков и точка отсчета, равная нулю. На самом деле все гораздо сложнее, существует несколько разновидностей систем координат. В статье подробно рассмотрим каждую из них, а также дадим подробное описание, где и зачем они используются.

Определение и область применения

Система координат - это комплекс определений, который задает положение тела или точки с помощью чисел или же других символов. Совокупность чисел, которые определяют расположение конкретной точки, называют координатами этой точки. Системы координат используются во многих областях науки, например, в математике координаты являются совокупностью чисел, которые сопоставлены точкам в некоторой карте заранее определенного атласа. В геометрии координаты - это величины, которые определяют расположение точки в пространстве и на плоскости. В географии координаты обозначают широту, долготу и высоту над общим уровнем моря, океана или другой заранее известной величины. В астрономии координаты являются величинами, которые дают возможность определить положение звезды, например, склонение и прямое восхождение. Это далеко не полный перечень того, где используются системы координат. Если вы думаете, что эти понятия далеки от людей, не интересующихся наукой, то поверьте, что в быту они встречаются гораздо чаще, чем вы себе думаете. Возьмите хотя бы карту города, чем вам не система координат?

Разобравшись с определением, давайте рассмотрим, какие разновидности координатных систем существуют и что они из себя представляют.

Зональная система координат

Данную систему координат применяют в основном при различных горизонтальных съемках и составлении достоверных планов местности. В ее основу положена равноугольная поперечно-цилиндрическая проекция Гаусса. В этой проекции всю поверхность земного геоида делят меридианами на 6-ти градусные зоны и номеруют с 1-й по 60-ю на восток от Гринвичского меридиана. При этом средний меридиан данной 6-ти угольной зоны называют осевым. Его принято совмещать с внутренней поверхностью цилиндра и считать осью абсцисс. Для того, чтобы избежать отрицательных значений ординат (у), ординату на осевом меридиане (начальную точку отсчета) принимают не за нуль, а за 500 км, то есть перемещают на 500 км к западу. Перед ординатой обязательно указывают номер зоны.

Система координат Гаусса-Крюгера

Данная система координат берет в основу проекцию, которую предложил известный немецкий ученый Гаусс, и разработал для пользования в геодезии Крюгер. Сущность данной проекции состоит в том, что земную сферу условно делят меридианами на шестиградусные зоны. Зоны нумеруют от Гринвичского меридиана с запада на восток. Зная номер зоны, вы легко сможете определить средний меридиан, называемый осевым, по формуле Z = 60(n) – 3, где (n) – это номер зоны. Для каждой зоны делают плоское изображение, путем ее проектирования на боковую поверхность цилиндра, ось которого находится перпендикулярно к земной оси. Затем этот цилиндр пошагово развертывают на плоскость. Экватор и осевой меридиан изображают прямыми линиями. Осью абсцисс в каждой зоне является осевой меридиан, а экватор выполняет роль оси ординат. Начальной точкой отсчета служит точка пересечения экватора и осевого меридиана. Абсциссы отсчитывают к северу от экватора только со знаком плюс и к югу от экватора только со знаком минус.

Полярная система координат на плоскости

Это двумерная система координат, каждая точка в которой определяется на плоскости двумя числами - полярным радиусом и полярным углом. Полярная система координат полезна в тех случаях, когда взаимосвязь между точками проще представить в виде углов и радиусов. Полярную систему координат задают лучом, называющимся полярной или нулевой осью. Точка, из которой выходит данный луч, называют полюсом или началом координат. Произвольная точка на плоскости определяется лишь двумя полярными координатами: угловой и радиальной. Радиальная координата равняется расстоянию от точки до начала системы координат. Угловая координата равна углу, на который необходимо против часовой стрелки повернуть полярную ось, чтобы попасть в точку.

Прямоугольная система координат

Что такое прямоугольная система координат вам наверняка известно еще со школьной скамьи, но все же, давайте вспомним еще разок. Прямоугольная система координат – это такая прямолинейная система, в которой оси расположены в пространстве или на плоскости и взаимно перпендикулярны между собой. Это самая простая и часто используемая система координат. Она прямо и довольно легко обобщается для пространств с любой размерностью, что также способствует ее широчайшему применению. Положение точки на плоскости определяют двумя координатами - икс и игрек, соответственно имеется ось абсцисс и ординат.

Декартовая система координат

Поясняя, что такое декартова система координат, в первую очередь необходимо сказать, что это частный случай прямоугольной системы координат, в котором по осям установлены одинаковые масштабы. В математике чаще всего рассматривают двухмерную или трехмерную декартовую систему координат. Координаты обозначают латинскими буквами x, y, z и называют, абсциссой, ординатой и аппликатой соответственно. Координатную ось (OX) обычно называют осью абсцисс, ось (OY) – осью ординат, а ось (OZ) – осью аппликат.

Теперь вы знаете, что такое система координат, какими они бывают и где используются.

Координаты

Координа́ты мн.
1.

Данные о местоположении кого-либо или чего-либо, определяемые на основе таких величин.


2. перен. разг.

Сведения о местонахождении, местопребывании кого-либо.


Толковый словарь Ефремовой . Т. Ф. Ефремова. 2000 .


Синонимы :

Смотреть что такое "Координаты" в других словарях:

    Координаты величины, определяющие положение точки (тела) в пространстве (на плоскости, на прямой). Совокупность координат всех точек пространства является системой координат. В Викисловаре есть статья «координата» Понятие и слово… … Википедия

    - (от лат. co приставка, означающая совместность, и ordinatus упорядоченный, определённый * a. coordinates; н. Koordinaten; ф. coordonnees; и. coordenadas) числа, величины, определяющие положение точки в пространстве. B геодезии, топографии … Геологическая энциклопедия

    - (от лат. co совместно и ordinatus упорядоченный определенный), числа, заданием которых определяется положение точки на плоскости, на поверхности или в пространстве. Прямоугольные (декартовы) координаты точки на плоскости суть снабженные знаками + …

    - (от латинского co совместно и ordinatus упорядоченный), числа, которые определяют положение точки на прямой, плоскости, поверхности, в пространстве. Координаты суть расстояния до выбранных каким либо способом координатных линий. Например,… … Современная энциклопедия

    Сферические. Если начало полярных координат взять вцентре сферы, то все точки сфер имеют одинаковый радиус вектор иостанутся изменяемыми только углы q и l. Обыкновенно вместо q беретсядругая координата j= 90 q, которая называется широтой, угол же …

    - (ср. век. лат., от лат. cum с, и ordinare приводить в порядок). В аналит. геометрии: такие величины, которые служат для определения положения какой нибудь точки. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

    Положение, местоположение, позиция, месторасположение, местонахождение, расположение Словарь русских синонимов. координаты см. местонахождение 1 Словарь синонимов русского языка. Практический справочник. М.: Русс … Словарь синонимов

    координаты - КООРДИНАТЫ, координат, мн. Адрес, телефон. Он женился, координаты поменял … Словарь русского арго

    В геодезии величины, определяющие положение точки земной поверхности относительно поверхности земного эллипсоида: широта, долгота, высота. Определяются геодезическими методами … Большой Энциклопедический словарь

    - (от лат. со – совместно и ordinatus – упорядоченный) осн. моменты, определяющие данность. В математике – величины, определяющие положение точки; часто наглядно они изображаются с помощью отрезков. Если отходящие от точки (начало координат) прямые … Философская энциклопедия

    Величины, определяющие положение точки. В Декартовыхпрямоугольных К. положение точки определяется тремя расстояниями ее оттрех взаимно перпендикулярных плоскостей; пересечения этих плоскостейпредставляют собою три прямые, выходящие из одной точки … Энциклопедия Брокгауза и Ефрона

Книги

  • Координаты населенных пунктов, часовые пояса и изменения исчисления времени , Редактор В. Федоров. Составитель И. Бариев , стр. 71 Справочник Координаты населенных пунктов, часовые пояса и изменения исчисления времени. Формат: 145 х 200 мм ISBN:5-87160-026-3… Категория: Научная и техническая литература Издатель: Старклайт , Производитель: Старклайт ,
  • Координаты чудес , Роберт Шекли , Американский писатель-фантаст Роберт Шекли популярен во всем мире. Он закончил технический колледж, но с 1952 года решил полностью посвятить себя литературе. Прослушал курс литературы у… Категория: Фантастика Серия: Science Fiction Издатель: Северо-Запад , Производитель: