Как работают наклонные плоскости? Методика обучения решению задач на движение по наклонной плоскости Для чего нужна наклонная плоскость.

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых... Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело (сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Сделаем рисунок, покажем силы, которые дествуют на машину.


На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, перемещение будет тольков вдоль оси Х)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае - с минусом.

Fтр = μN, где N - сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что:

Коэффициент трения - безразмерная величина. Следовательно, единиц измерения нет.

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T - сила натяжения нити

Разберемся с направлением сил на ось Y:

Выразим T и подставим числительные значения:

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе - это синус.

Отношение прилежащего катета к гипотенузе - это косинус.

Сила тяги на ось Y - отрезок (вектор) BC.

Сила тяги на ось X - отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X- это Fнcosα. Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34Н, второй - 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL - силы натяжения. LM и BC - силы натяжения, спроецированные на ось X, AC и KM - на ось Y.

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае (здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (отрезок МК параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:


Запишем второй закон Ньютона на X и Y:

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное - понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс - это отношение противолежащего катета к прилежащему:

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

Она позволяет поднимать груз вверх, прикладывая к нему усилие, заметно меньшее, чем сила тяжести , действующая на этот груз.

Примерами наклонных плоскостей служат пандусы и трапы . Принцип наклонной плоскости можно видеть также в таких колющих и режущих инструментах, как стамеска , топор , плуг , клин , винт .

Энциклопедичный YouTube

    1 / 3

    ✪ Наклонная плоскость - Физика в опытах и экспериментах

    ✪ Урок 87. Движение по наклонной плоскости (ч.1)

    ✪ Простые механизмы. Наклонная плоскость

    Субтитры

История

Пандусы и трапы широко применялись при строительстве ранних каменных сооружений, дорог и акведуков, при штурме военных укреплений.

Мысленные и реальные эксперименты с наклонными плоскостями, которые на заре Нового времени делали Леонардо да Винчи , Симон Стевин , Галилео Галилей и другие физики, привели к познанию законов природы, связанных с силой тяжести, массой , инерцией .

Первое доказательство условия равновесия на наклонной плоскости без трения дал Стевин ; это доказательство опиралось на постулат о невозможности вечного двигателя.

Движение по наклонной плоскости

здесь μ {\displaystyle \mu } - коэффициент трения тела о поверхность, α {\displaystyle \alpha } - угол наклона плоскости.

Предельным является случай, когда угол наклона плоскости равен 90°, α = g {\displaystyle \alpha =g} , и тело падает вдоль стены. Другим предельным случаем является ситуация, когда угол наклона плоскости равен 0°, и плоскость параллельна земле. В этом случае тело не может двигаться без приложения внешней силы.

Характер движения тела, лежащего на наклонной плоскости, зависит от величины критического угла. Тело покоится, если угол наклона плоскости меньше критического угла, покоится или движется равномерно, если угол наклона плоскости равен критическому углу, и движется равноускоренно, если угол наклона плоскости больше критического угла.

К простым механизмам кроме рычага и блока относятся также наклонная плоскость и ее разновидности: клин и винт.

НАКЛОННАЯ ПЛОСКОСТЬ

Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия.
К таким устройствам относятся пандусы, эскалаторы, обычные лестницы и конвейеры.
Если нужно поднять груз на высоту, всегда легче воспользоваться пологим подъемом, чем крутым. Причем, чем положе уклон , тем легче выполнить эту работу. Когда время и расстояние не имеют большого значения, а важно поднять груз с наименьшим усилием, наклонная плоскость оказывается незаменима.

С помощью этих рисунков можно объяснить, как работает простой механизм НАКЛОННАЯ ПЛОСКОСТЬ.
Классические расчеты действия наклонной плоскости и других простых механизмов принадлежат выдающемуся античному механику Архимеду из Сиракуз.

При строительстве храмов египтяне транспортировали, поднимали и устанавливали колоссальные обелиски и статуи, вес которых составлял десятки и сотни тонн! Все это можно было сделать, используя среди других простых механизмов наклонную плоскость .
Главным подъемным приспособлением египтян была наклонная плоскость - рампа. Остов рампы, то есть ее боковые стороны и перегородки, на небольшом расстоянии друг от друга пересекавшие рампу, строились из кирпича; пустоты заполнялись тростником и ветвями. По мере роста пирамиды рампа надстраивалась. По этим рампам камни тащили на салазках таким же образом, как и по земле, помогая себе при этом рычагами. Угол наклона рампы был очень незначительным - 5 или 6 градусов.

Колонны древнего египетского храма в Фивах.

Каждую из этих огромных колонн рабы втаскивали по рампе- наклонной плоскости. Когда колонна вползала в яму, через лаз выгребали песок, а затем разбирали кирпичную стенку и убирали насыпь. Таким образом, например, наклонная дорога к пирамиде Хафра при высоте подъема в 46 метров имела длину около полукилометра .